1.1集合的概念及运算
集合及其关系
集合的基本运算
*集合基本运算
1.2常用逻辑用语
充分条件与必要条件
全称量词与存在量词
*充分条件与必要条件判断应用
2.1不等式及其解法
不等式的概念和性质
不等式的解法
*求解不等式恒成立问题的常用方法
2.2基本不等式
基本不等式
*利用基本不等式求最值的方法
3.1函数的概念及表示
函数的有关概念
分段函数
*函数定义域的求法
*求函数解析式的常用方法
*分段函数问题的解题策略
3.2函数的基本性质
函数的单调性与最值
函数的奇偶性与周期性
*函数的单调性及其应用
*函数奇偶性的判断及应用
*函数的周期性问题求解
3.3二次函数、幂函数、指数函数、对数函数
二次函数
指数式与对数式
幂函数、指数函数与对数函数
*比较指数式、对数式大小的方法
3.4函数的图像
函数的图像
函数图像的应用
*函数图像应用问题的解法
3.5函数的零点与方程的根
函数的零点
*判断函数零点个数或所在区间的方法
*根据函数的零点求参数的取值范围
3.6函数模型及综合应用
函数模型及应用
*已知函数模型求解实际问题
*选择函数模型,解决实际应用
4.1导数的概念和运算
导数的概念和运算
*利用导数的几何意义求曲线的切线方程及参数
4.2利用导数研究函数的单调性、极值和最值
利用导数研究函数的单调性
利用导数研究函数的极值、最值
*利用导数研究函数单调性的方法
*利用导数研究函数的极值、最值
构造:利用导数解决不等式问题
5.1三角函数的概念、同角三角函数的基本关系式及诱导公式
任意角和弧度制、三角函数的概念
同角三角函数的基本关系式及诱导公式
*同角三角函数的基本关系式的应用
5.2三角恒等变换
三角恒等变换
*三角函数式的化简、求值
5.3三角函数的图像与性质
三角函数的图像及其变换
三角函数的性质及其应用
*利用三角函数图像求其解析式的方法
*三角函数的性质及其应用
5.4解三角形
正弦定理、余弦定理
解三角形及其综合应用
*三角形形状的判断
*与面积有关的解三角形综合问题
6.1平面向量的概念及线性运算、平面向量基本定理及坐标表示
平面向量的概念及线性运算
平面向量基本定理及坐标运算
*平面向量线性运算的解题策略
*向量共线问题的求解方法
6.2平面向量的数量积及其应用
数量积的定义及夹角与模问题
数量积的综合应用
*求解平面向量模的方法
*求解平面向量夹角的方法
7.1等差数列
等差数列及其前n项和
等差数列的性质及应用
*等差数列的判定方法
*等差数列前n项和的最值问题
7.2等比数列
等比数列及其前n项和
等比数列的性质及应用
*等比数列的判定方法
*等比数列的基本运算
7.3数列的综合问题
求通项公式
数列的求和
*错位相减法求和
*裂项相消法求和
**巧妙构造转化
8.1空间几何体的结构特征、表面积和体积
空间几何体的结构特征和表面积
!!空间几何体的体积
*空间几何体表面积与体积的求解方法
*与球有关的切、接问题的求解方法
圆柱,圆锥,圆台,
立方体|三角锥,台,
球
三棱锥内切球:V=1 / 3 S表 r内切
三角形重心:中线交点,重心到顶点 = 到对边中点 x 2,(x1+x2+x3 / 3)
外心:垂直平分线交点,到三角形顶点距离相等
垂心:三条高线交点
内心:内角平分线交点,到三边距离相等
***正方体结构特征的应用
2. 正方体的截面形状:
三角形:等边、等腰、一般、锐角;不能是直角、钝角
四边形:至少一组对边平行
不能是直角梯形
五边形:2组分别平行的变,2角相等,不能是正五边形
六边形:3组分别平行的变,2角相等,可以正六边形
***求体积:
分割求和,补形
***最短距离
转化为平面图形
8.2直线、平面平行的判定与性质
直线、平面平行的判定与性质
*判定或证明线面平行的方法
*判定或证明平面与平面平行的方法
8.3直线、平面垂直的判定与性质
直线、平面垂直的判定与性质
*判定或证明直线与直线垂直的方法
*判定或证明直线与平面垂直的方法
*判定或证明平面与平面垂直的方法
8.4空间角与距离、空间向量及应用
空间角与距离
空间向量及其应用
*求解异面直角所成角的方法
*求解直线与平面所成角的方法
*求解二面角的方法
Norm b, vec a, angle theta
P(x0,y0) to l:Ax+By+C=0 d= Ax0+By0+C / sqrt(A^2+B^2)
Two parallel lines d= C1-C2 / sqrt(A^2+B^2)
距离的几何意义求最值:两点之间线段最短,距离和最小值;三角形两边之差小于第三边,求距离差最大值
9.1直线方程与圆的方程
直线的方程
圆的方程
*对称问题的处理方法
*求圆的方程的方法
9.2直线、圆的位置关系
两直线间额位置关系
直线与圆、圆与圆的位置关系
*有关圆的弦长问题解法
*圆的切线问题
*与圆有关的最值问题
10.1椭圆
椭圆的定义和标准方程
椭圆的几何性质
*椭圆定义的应用
*求离心率的值(或取值范围)
10.2双曲线
双曲线的定义和标准方程
双曲线的几何性质
*有关双曲线定义和标准方程问题的解题策略
*求双曲线的离心率的值(或取值范围)的方法
10.3抛物线
抛物线的定义和标准方程
抛物线的几何性质
*抛物线定义的应用
*抛物线焦点弦问题的求解方法
10.4直线与圆锥曲线的位置关系
直线与圆锥曲线的位置关系
*有关位置关系、弦长问题的解题策略
*圆锥曲线中中点弦问题的解题策略
11.1排列、组合
两个计数原理、排列与组合
*排列问题的解题策略
*组合问题
11.2二项式定理
二项式定理
*求展开式中的特定项或特定项的系数
*求二项式系数和与各项的系数和
12.1随机事件、古典概型
随机事件的概率
古典概型
有限性-样本空间样本点只有有限个
等可能性-每个样本点发生的可能性相等
*古典概型概率的求法
12.2离散型随机变量及其分布列、均值与方差
离散型随机变量及其分布列、均值与方差
*离散型随机变量的分布列、期望与方差的求法
12.3二项分布与正态分布
条件概率与全概率公式、相互独立事件及二项分布
正态分布
*求条件概率的方法
*n重伯努利试验及二项分布问题的求解方法
*正态分布区间与性质的应用
12.4统计与成对数据的统计分析
抽样方法与总体分布的估计
成对数据的统计分布
*频率分布直方图的应用
*经验回归方程的求解运用
*独立性检验的应用
X2>xa -> 1-a prob X not independent of Y:
a 0.1 0.05 0.01 0.005 0.001
Xa 2.706 3.841 6.635 7.879 10.828
复数的概念
复数的运算
*复数代数形式的四则运算的解题方法
1.1 Change in Tandem 3 2
1.2 Rates of Change 3 3
1.3 2 rates of change in linear and quadratic functions
1.4 3 1 polynomial functions and rates of change
1.5 Polynomial Functions 2 and Complex Zeros 3
1.6 Polynomial Functions and End Behavior 1
1.7 Rational Functions and 3 End Behavior 1
1.8 Rational Functions and Zeros 2
1.9 Rational Functions and Vertical Asymptotes 3
1.10 Rational Functions and Holes 1
1.11 Equivalent Representations of Polynomial and Rational Expressions 3 1
1.12 Transformations of 3 Functions 2
1.13 Function Model Selection and Assumption Articulation 3 1
1.14 Function Model Construction and Application
2.1 Change in Arithmetic and Geometric Sequences 3 1
2.2 Change in Linear and 3 Exponential Functions 3
2.3 Exponential Functions 1
2.4 Exponential Function 3 Manipulation 1
2.5 Exponential Function Context and Data Modeling 3 2
2.6 Competing Function 3 Model Validation 1
2.7 2 1 composition of functions
2.8 Inverse Functions 2 1
2.9 Logarithmic Expressions 1
2.10 Inverses of Exponential 2 Functions 3
2.11 Logarithmic Functions 1
2.12 Logarithmic Function 3 Manipulation 1
2.13 Exponential and Logarithmic Equations and Inequalities 1
2.14 3 2 logarithmic function context and data modeling
2.15 Semi-log Plots
3.1 Periodic Phenomena 3 2
3.2 3 2 sine, cosine, and tangent
3.3 Sine and Cosine 3 Function Values 2
3.4 Sine and Cosine 3 Function Graphs 2 3
3.5 Sinusoidal Functions 1
3.6 Sinusoidal Function 2 Transformations 1
3.7 Sinusoidal Function Context and Data Modeling 3 2
3.8 The Tangent Function 3 1
3.9 Inverse Trigonometric 2 Functions 1
3.10 Trigonometric Equations and Inequalities 2 3 2
3.11 3 1 the secant, cosecant, and cotangent functions
3.12 Equivalent Representations of Trigonometric Functions 3 1
3.13 Trigonometry and 2 Polar Coordinates 2
3.14 Polar Function Graphs 3 3
3.15 Rates of Change in Polar Functions
4.1 Parametric Functions 3
4.2 Parametric Functions Modeling Planar Motion 3
4.3 Parametric Functions and Rates of Change 1
4.4 Parametrically Defined Circles and Lines 2
4.5 Implicitly Defined 3 Functions 1
4.6 Conic Sections 2 1
4.7 Parametrization of Implicitly Defined Functions 2 2
4.8 Vectors 3 3
4.9 Vector-Valued Functions 1
4.10 Matrices 3 1
4.11 The Inverse and Determinant of a Matrix 3 1
4.12 Linear Transformations and Matrices 1
4.13 Matrices as Functions 2 3 1
4.14 Matrices Modeling contexts
1.1 Introducing Calculus: Can Change Occur at an Instant? 2 LIM
1.2 Defining Limits and 2 Using Limit Notation LIM
1.3 Estimating Limit 2 Values from Graphs LIM
1.4 Estimating Limit 2 Values from Tables LIM
1.5 Determining Limits Using Algebraic Properties of Limits 1 LIM
1.6 Determining Limits Using Algebraic Manipulation 1 LIM
1.7 Selecting Procedures 1 for Determining Limits LIM
1.8 Determining Limits Using the Squeeze Theorem 3 LIM
1.9 Connecting Multiple Representations of Limits 2 LIM
1.10 Exploring Types of 3 Discontinuities LIM
1.11 Defining Continuity 3 at a Point LIM
1.12 Confirming Continuity 1 over an Interval LIM
1.13 Removing 1 Discontinuities LIM
1.14 Connecting Infinite Limits and Vertical Asymptotes 3 LIM
1.15 Connecting Limits at Infinity and Horizontal Asymptotes 2 FUN
1.16 Working with the Intermediate Value Theorem (IVT)
2.1 Defining Average and Instantaneous Rates of Change at a Point 2 CHA
2.2 Defining the Derivative of a Function and Using Derivative Notation 1 4 CHA
2.3 Estimating Derivatives 1 of a Function at a Point
2.4 Connecting Differentiability and Continuity: Determining When Derivatives Do and Do Not Exist 3 FUN
2.5 Applying the Power Rule 1 FUN
2.6 Derivative Rules: Constant, Sum, Difference, and Constant Multiple 1 FUN
2.7 Derivatives of cos x, sin x, ex LIM , and ln x 1 FUN
2.8 The Product Rule 1 FUN
2.9 The Quotient Rule 1 FUN
2.10 Finding the Derivatives of Tangent, Cotangent, Secant, and/or Cosecant Functions
3.1 The Chain Rule 1 FUN
3.2 Implicit Differentiation 1 FUN
3.3 Differentiating Inverse Functions 3 FUN
3.4 Differentiating Inverse Trigonometric Functions 1 FUN
3.5 Selecting Procedures for Calculating Derivatives 1 FUN
3.6 Calculating HigherOrder Derivatives
4.1 Interpreting the Meaning of the Derivative in Context 1 CHA
4.2 Straight-Line Motion: Connecting Position, Velocity, and Acceleration 1 CHA
4.3 Rates of Change in Applied Contexts Other Than Motion 2 CHA
4.4 Introduction to Related Rates 1 CHA
4.5 Solving Related Rates Problems 3 CHA
4.6 Approximating Values of a Function Using Local Linearity and Linearization 1 LIM
4.7 Using L’Hospital’s Rule for Determining Limits of Indeterminate Forms 3 FUN
5.1 Using the Mean Value Theorem 3 FUN
5.2 Extreme Value Theorem, Global Versus Local Extrema, and Critical Points 3 FUN
5.3 Determining Intervals on Which a Function Is Increasing or Decreasing 2 FUN
5.4 Using the First Derivative Test to Determine Relative (Local) Extrema 3 FUN
5.5 Using the Candidates Test to Determine Absolute (Global) Extrema 1 FUN
5.6 Determining Concavity of Functions over Their 2 Domains FUN
5.7 Using the Second Derivative Test to 3 Determine Extrema FUN
5.8 Sketching Graphs of Functions and Their 2 Derivatives FUN
5.9 Connecting a Function, Its First Derivative, and Its Second Derivative 2 FUN
5.10 Introduction to Optimization Problems 2 FUN
5.11 Solving Optimization Problems 3 FUN
5.12 Exploring Behaviors of Implicit Relations 1 3 CHA
6.1 Exploring Accumulations of Change 4 LIM
6.2 Approximating Areas 1 with Riemann Sums LIM
6.3 Riemann Sums, Summation Notation, and Definite Integral Notation 2 FUN
6.4 The Fundamental Theorem of Calculus and Accumulation Functions 1 FUN
6.5 Interpreting the Behavior of Accumulation Functions Involving Area 2 FUN
6.6 Applying Properties of 3 Definite Integrals FUN
6.7 The Fundamental Theorem of Calculus and Definite Integrals 3 FUN
6.8 Finding Antiderivatives and Indefinite Integrals: Basic Rules and Notation 4 FUN
6.9 Integrating Using 1 Substitution FUN
6.10 Integrating Functions Using Long Division and Completing the Square 1 FUN
6.11 Integrating Using Integration by Parts bc only 1 FUN
6.12 Using Linear Partial 1 Fractions bc only LIM
6.13 Evaluating Improper 1 Integrals bc only FUN
6.14 Selecting Techniques 1 for Antidifferentiation
7.1 Modeling Situations with Differential Equations 2 FUN
7.2 Verifying Solutions for Differential Equations 3 FUN
7.3 Sketching Slope Fields 2 FUN
7.4 Reasoning Using Slope Fields 4 FUN
7.5 Approximating Solutions Using Euler’s Method bc only 1 FUN
7.6 Finding General Solutions Using Separation of Variables 1 FUN
7.7 Finding Particular Solutions Using Initial Conditions and Separation of Variables 1 FUN
7.8 Exponential Models with Differential Equations 3 FUN
7.9 Logistic Models with Differential Equations bc only 3 Differential Equations UNIT 7 UNIT 6 I
8.1 Finding the Average Value of a Function on an Interval 1 CHA
8.2 Connecting Position, Velocity, and Acceleration of Functions Using Integrals 1 CHA
8.3 Using Accumulation Functions and Definite Integrals in Applied Contexts 3 CHA
8.4 Finding the Area Between Curves Expressed as Functions of x 4 CHA
8.5 Finding the Area Between Curves Expressed as Functions of y 1 CHA
8.6 Finding the Area Between Curves That Intersect at More Than Two Points 2 CHA
8.7 Volumes with Cross Sections: Squares and Rectangles 3 CHA
8.8 Volumes with Cross Sections: Triangles and Semicircles 3 CHA
8.9 Volume with Disc Method: Revolving Around the x- or y-Axis 3 CHA
8.10 Volume with Disc Method: Revolving 2 Around Other Axes CHA
8.11 Volume with Washer Method: Revolving 4 Around the x- or y-Axis CHA
8.12 Volume with Washer Method: Revolving 2 Around Other Axes CHA
8.13 The Arc Length of a Smooth, Planar Curve and Distance Traveled bc only
9.1 Defining and Differentiating Parametric Equations 2 CHA
9.2 Second Derivatives of Parametric Equations 1 CHA
9.3 Finding Arc Lengths of Curves Given by Parametric Equations 1 CHA
9.4 Defining and Differentiating VectorValued Functions 1 FUN
9.5 Integrating Vector1 Valued Functions FUN
9.6 Solving Motion Problems Using Parametric and VectorValued Functions 1 FUN
9.7 Defining Polar Coordinates and Differentiating in Polar Form 2 CHA
9.8 Find the Area of a Polar Region or the Area Bounded by a Single Polar Curve 3 CHA
9.9 Finding the Area of the Region Bounded by Two Polar Curves 3 Infinite Sequences and Series bc only UNIT 10 P
10.1 Defining Convergent and Divergent Infinite Series LIM
10.2 Working with Geometric Series LIM
10.3 The nth Term Test for Divergence LIM
10.4 Integral Test for Convergence LIM
10.5 Harmonic Series and p-Series LIM
10.6 Comparison Tests for Convergence LIM
10.7 Alternating Series Test for Convergence LIM
10.8 Ratio Test for Convergence LIM
10.9 Determining Absolute or Conditional Convergence 3 LIM
10.10 Alternating Series 1 Error Bound LIM
10.11 Finding Taylor Polynomial Approximations of Functions 3 2 LIM
10.12 Lagrange Error Bound 1 LIM
10.13 Radius and Interval of Convergence of Power Series 2 LIM
10.14 Finding Taylor or Maclaurin Series for a Function 2 LIM
10.15 Representing Functions as Power Series 3 CHA
1.1 Introducing Statistics: What Can We Learn from Data? 1 VAR
1.2 The Language of Variation: Variables 2 UNC
1.3 Representing a Categorical Variable with Tables 2 UNC
1.4 Representing a Categorical Variable with Graphs 2 UNC
1.5 Representing a Quantitative Variable with Graphs 2 UNC
1.6 Describing the Distribution of a Quantitative Variable 2 UNC
1.7 Summary Statistics for 2 a Quantitative Variable 4 UNC
1.8 Graphical Representations of Summary Statistics 2 UNC
1.9 Comparing Distributions of a Quantitative Variable 2 VAR
1.10 The Normal 2 Distribution
2.1 Introducing Statistics: Are Variables Related? 1 UNC
2.2 Representing Two Categorical Variables 2 UNC
2.3 Statistics for Two Categorical Variables 2 UNC
2.4 Representing the Relationship Between Two Quantitative Variables DAT 2 DAT
2.5 Correlation 2 4 DAT
2.6 Linear Regression Models 2 DAT
2.7 Residuals 2 DAT
2.8 Least Squares 2 Regression 4 DAT
2.9 Analyzing Departures from Linearity
3.1 Introducing Statistics: Do the Data We Collected Tell the Truth? 1 DAT
3.2 Introduction to 1 Planning a Study 4 DAT
3.3 Random Sampling and Data Collection 1 DAT
3.4 Potential Problems with Sampling 1 VAR
3.5 Introduction to Experimental Design 1 VAR
3.6 Selecting an Experimental Design 1 VAR
3.7 Inference and Experiments
4.1 Introducing Statistics: Random and Non-Random Patterns? 1 UNC
4.2 Estimating Probabilities Using Simulation 3 VAR
4.3 Introduction 3 to Probability 4 VAR
4.4 Mutually Exclusive Events 4 VAR
4.5 Conditional Probability 3 VAR
4.6 Independent Events and Unions of Events 3 VAR
4.7 Introduction to Random Variables and Probability Distributions 2 4 VAR
4.8 Mean and Standard Deviation of Random Variables 3 4 VAR
4.9 Combining Random Variables 3 UNC
4.10 Introduction to the Binomial Distribution 3 UNC
4.11 Parameters for a binomial distribution
4.12 the geometric distribution
5.1 Introducing Statistics: Why Is My Sample Not Like Yours? 1 VAR
5.2 The Normal Distribution, Revisited 3 UNC
5.3 The Central 3 Limit Theorem UNC
5.4 Biased and Unbiased 4 Point Estimates 3 VAR
5.5 Sampling Distributions 3 for Sample Proportions 4 UNC
5.6 Sampling Distributions for Differences in Sample Proportions 3 4 UNC
5.7 Sampling Distributions 3 for Sample Means 4 UNC
.8 Sampling Distributions for Differences in Sample Means
~16–18 Class Periods 12–15% AP Exam Weighting VAR
6.1 Introducing Statistics: Why Be Normal? 1 UNC
6.2 Constructing a Confidence Interval for a Population Proportion + UNC
6.3 Justifying a Claim Based on a Confidence Interval for a Population Proportion 4 VAR
6.4 Setting Up a Test for a 1 Population Proportion 4 VAR
6.5 Interpreting DAT p-Values 3 4 DAT
6.6 Concluding a Test for a Population Proportion 4 UNC
6.7 Potential Errors When Performing Tests + UNC
6.8 Confidence Intervals for the Difference of + Two Proportions UNC
6.9 Justifying a Claim Based on a Confidence Interval for a Difference of Population Proportions 4 VAR
6.10 Setting Up a Test for the Difference of Two Population Proportions 1 4 VAR
6.11 Carrying Out a Test for the Difference of Two Population Proportions
7.1 Introducing Statistics: Should I Worry About Error? 1 VAR
7.2 Constructing a Confidence Interval for a Population Mean UNC + UNC
7.3 Justifying a Claim About a Population Mean Based on a Confidence Interval 4 VAR
7.4 Setting Up a Test for a 1 Population Mean 4 VAR
7.5 Carrying Out a Test for a Population Mean DAT 3 4 UNC
7.6 Confidence Intervals for the Difference of + Two Means UNC
7.7 Justifying a Claim About the Difference of Two Means Based on a Confidence Interval 4 VAR
7.8 Setting Up a Test for the Difference of Two Population Means 1 4 VAR
7.9 Carrying Out a Test for the Difference of Two Population Means DAT 3 4
7.10 Skills Focus: Selecting, Implementing, and Communicating Inference Procedures
8.1 Introducing Statistics: Are My Results Unexpected? 1 VAR
8.2 Setting Up a Chi-Square Goodness + of Fit Test VAR
8.3 Carrying Out a Chi-Square Test for Goodness of Fit DAT 3 4 VAR
8.4 Expected Counts in Two-Way Tables 3 VAR
8.5 Setting Up a Chi-Square Test for Homogeneity or Independence 1 4 VAR
8.6 Carrying Out a Chi-Square Test for Homogeneity or Independence DAT 3 4
8.7 Skills Focus: Selecting an Appropriate Inference Procedure for Categorical Data
9.1 Introducing Statistics: Do Those Points Align? 1 UNC
9.2 Confidence Intervals for the Slope of a + Regression Model UNC
9.3 Justifying a Claim About the Slope of a Regression Model Based on a Confidence Interval 4 VAR
9.4 Setting Up a Test for the Slope of a Regression Model 1 4 VAR
9.5 Carrying Out a Test for the Slope of a Regression Model DAT 3 4
9.6 Skills Focus: Selecting an Appropriate Inference Procedure
1.1 Quadratics 1.2 Functions 1.3 Coordinate geometry 1.4 Circular measure 1.5 Trigonometry 1.6 Series 1.7 Differentiation 1.8 Integration
2.1 Algebra 2.2 Logarithmic and exponential functions 2.3 Trigonometry 2.4 Differentiation 2.5 Integration 2.6 Numerical solution of equations
3.1 Algebra 3.2 Logarithmic and exponential functions 3.3 Trigonometry 3.4 Differentiation 3.5 Integration 3.6 Numerical solution of equations 3.7 Vectors 3.8 Differential equations 3.9 Complex numbers
4.1 Forces and equilibrium 4.2 Kinematics of motion in a straight line 4.3 Momentum 4.4 Newton’s laws of motion 4.5 Energy, work and power 5
5.1 Representation of data 5.2 Permutations and combinations 5.3 Probability 5.4 Discrete random variables 5.5 The normal distribution 6
6.1 The Poisson distribution 6.2 Linear combinations of random variables 6.3 Continuous random variables 6.4 Sampling and estimation 6.5 Hypothesis tests
1.1 Roots of polynomial equation
1.2 Rational functions and graphs
1.3 Summation of series
1.4 Matrices
1.5 Polar coordinates
1.6 Vectors
1.7 Proof by induction
Knowledge of Paper 1: Further Pure Mathematics 1 subject content from this syllabus is assumed for this component.
2.1 Hyperbolic functions
2.2 Matrices
2.3 Differentiation
2.4 Integration
2.5 Complex numbers
2.6 Differential equations
3.1 Motion of a projectile
3.2 Equilibrium of a rigid body
3.3 Circular motion
3.4 Hooke's law
3.5 Linear motion under a variable force
3.6 Momentum
4.1 Continuous random variables
4.2 Inference using normal and t-distributions
4.3 2 | -tests
4.4 Non-parametric tests
4.5 Probability generating functions
Number and algebra z
Functions z
Geometry and trigonometry z
Statistics and probability z
Calculus